Load Latency Tolerance In Dynamically Scheduled Processors

Srikanth T. Srinivasan and Alvin R. Lebeck
Department of Computer Science
Duke University
Durham, North Carolina 27708 USA
{sri,alvy}@cs.duke.edu

Abstract allow speculative execution [4, 9, 19], committing results

. . o only when the true outcome of a branch is known.
This paper provides quantitative measurements of load

latency tolerance in a dynamically scheduled processor. To Ur]fortunat_ely, because of finite resources, data depen-
determine the latency tolerance of each memory load dencies and |mperf_ect branch pr.ed.|ct|on, some operations
operation, our simulations use flexible load completion must comple_te quickly to maximize processor perfor-

policies instead of a fixed memory hierarchy that dictates mance. Consider a processor capable of issuing 8 instruc-
the latency. Although our policies delay load completion tions per cycle_ anq a 10 cycle level wo cache access
as long as possible, they produce performance (instruc-latency' In the time it takes the IeveI.two cache to se_1t|sfya
tions committed per cycle (IPC)) comparable to an ideal load request, the processor could issue up to 80 instruc-

memory system where all loads complete in one cycle. Ourtlons. If many of these instructions are dependent on the

measurements reveal that to produce IPC values withinValue returned by the Ipad and there is insuffic_ient buffer
8% of the ideal memory system, between 1% and 62% ofPace because o_f previous long latency operations, the 10
loads need to be satisfied within a single cycle and that upcycle Ioaq operation wou_ld cause the processor to stall. In
to 84% can be satisfied in as many as 32 cycles, dependin ontrast, if many of the instructions are independent and
on the benchmark and processor configurat’ion Load here is sufficient buffer space, their execution could over-
latency tolerance is largely determined by whether an lap with the Ipad,. and not stall the processor. Load latency
unpredictable branch is in the load’'s data dependence tolerance exists in the latter case, when a memory refer-
graph and the depth of the dependence graph. Our resyltsENCe can take many cycles to complete without adversely
L affecting performance.
also show that up to 36% of all loads miss in the level one ! L : :
cache yet have latency demands lower than second level, The first contr|but|on of this paper is to pre_sent a quan-
cache access times. We also show that up to 37% of loagd!tative evaluation of load Iatenqy tole_r ance in a dynami-
hit in the level one cache even though they possess enougﬁaIIy scheduled processor. Using SimpleScalar [2] we

latency tolerance to be satisfied by lower levels of the measure individual load instruction latency tolerance by
memory hierarchy forcing their completion such that the number of instruc-

tions committed per cycle (IPC) is comparable to an ideal
memory system that satisfies all requests in a single cycle.
We evaluate a variety of polices to force load completion

Many of today’s microprocessors use dynamic schedul-in an effort to balance high IPC values with long load
ing [17.18] to maximize the number of instructions issued latencies. We find that using mispredicted branc.hes and
per cycle. By buffering instructions that are waiting for the depth of aload's dependence graph to determine when
their operands and executing other independent instruc/0ads should complete, produces IPC values within 8% of
tions out of order, the processor is able to tolerate someth€ ideal memory system, while yielding noticeable
long latency operations—including cache misses. To find atency tolerance. _
enough independent instructions, most processors employ OUr measurements, on an 8 issue processor that can
sophisticated branch prediction mechanisms [13, 21] andh@ve up to 256 instructions in flight, show that between
13% and 62% of the loads in our benchmarks need to

This work supported in part by NSF CAREER Award MIP-97-02547, complete in one cycle and that 58% to 98% must complete
DARPA Grant DABT63-98-1-0001, NSF Grants CDA-97-2637 and

CDA-95-12356, Duke University, and an equipment donation through in 8 cycles. Reducing the issue WldthotO 4, redouces the
Intel Corporation’s Technology for Education 2000 Program. The views number of one cycle loads to between 1% and 46% and the
and conclusions contained herein are those of the authors and should nofumber of 8 cycle loads to 5% to 88%. These results show

be interpreted as necessarily representing the official policies or endorsethat many loads could be satisfied with latencies compara-
ments, either expressed or implied, of the U.S. Government. ble to second-level cache hit times.
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The second contribution of this paper is an evaluation 1. Data Dependencieslf the operands of instruction
of the match between the latencies incurred in a traditional ~ are produced by a previous instructipntheni is
memory hierarchy and an application’s inherent latency  dependent of, andi can begin execution only aftér
demands. We find that between 2% and 36% of loads has completed. Clearly, instructiortan not be issued
requiring latency below 8 cycles miss in the first level in the same cycle gs While looking ahead, if most of
cache, depending on the cache size and application. Fur- the newly dispatched instructions are dependent on
thermore, our results reveal that between 2% and 37% of earlier issued instructions waiting to complete, even a
loads that hit in the first level cache have enough latency  dynamically scheduled processor will be unable to
tolerance that they could be satisfied by lower levels of the  identify ready instructions to execute, and the proces-
memory hierarchy. sor utilization will go down.

The remainder of this paper is organized as follows. 5 Finjte Resources The number of instructions the pro-
Section 2 provides background information. Section3  assor can look ahead to identify independent instruc-
describes our technique for measuring the available load  tions is limited by the number of available entries in
latency tolerance. Our experimental methodology is pre-  the issue window. Dependent instructions waiting for
sented in Section 4, and Section 5 presents our results. he result of a load and independent instructions wait-

Section 6 concludes this paper. ing to commit their results occupy entries. For long
latency operations, the window could become full and
2 Background stall the processor.

Superscalar processors maximize serial program per-3- Branch Misprediction: When the predicted outcome
formance by issuing multiple instructions per cycle. Each ~ 0f a branch is incorrect, the work performed by the
cycle the processor attempts to issue upissue-width processor while executing along the incorrect path is
instructions. One of the most important aspects of these ~ Useless. If computation of the true branch outcome is
systems is identifying independent instructions that can  delayed because of a cache miss, the processor could

execute in parallel. waste many cycles before the misprediction is
detected.
2.1 Scheduling, Prediction, and Speculation The remainder of this paper examines load latency tol-

In order to identify and exploit instruction level paral- erance in the context of the above potential limitations.

lelism, most of today’s processors employ dynamic sched- .

uling, branch prediction, and speculative execution. 3 Measuring Load Latency Tolerance
Dynamic scheduling is an all hardware technique for iden-
tifying and issuing multiple independent instructions in a
single cycle. The hardware looks ahead by fetching
instructions into a buffer—called assue window-from
which it selects instructions to issue to the functional units.
Instructions are issued only when all their operands are
available, and independent instructions can execute out-of

order._ResuIts of in_structi_on_s executed out-of-order are, ihout degrading performance? Finally, we want to eval-
committed to the register file in program order. uate the match between a load’s latency tolerance and the
The issue window is filled with instructions from sev- |atency it incurs in a conventional cache memory hierar-
eral basic blocks by predicting the direction of conditional chy.
branches [3, 6, 10, 12, 14]. Furthermore, the instructions  \ye compute the latency tolerance of a load by measur-
from the predicted path are speculatively executed, hopingmg the number of cycles that elapse between the time the
the branch prediction is correct. These instructions can not|yo4 is issued and the time it completes. A load is issued to
update the architectural state of the processor until the trug,o memory system when its effective address is available,
outcome of the branch is determined. While waiting for anq it completes when the referenced data is available for
the branch computation, these instructions occupy valu-yse by dependent instructions. In a traditional memory
able buffer space potentially reducing the issue rate. system, a load’s latency depends primarily on which level
The above techniques are very effective for well- in the memory hierarchy satisfies the request.
behaved programs with short-latency operations. How-
ever, long latency operations, such as load cache misses,. Recent techniques show how to reuse some of the results obtained dur-
can reduce their effectiveness for the following reasons: ing speculative execution [15].

This section presents the policies we use to determine
the latency tolerance of load instructions. Our primary
goal is to quantify the amount of latency tolerance in
dynamically scheduled processors. We also want to deter-
mine if there is variation among individual load latency
tolerance. That is, do some loads require fast servicing
‘while others can be satisfied in longer amounts of time




Our goal is to determine how long a load can be out- executes useful instructions or enable the processor to sus-
standing without causing degradation in performance. tain reasonable execution rates.
Hence, we do not complete a load as long as the processor
is able to do useful work by looking ahead and executing Branch-based Load Completion
independent instructions. In particular, we want our mea- Most modern processors predict the outcome of
sured latencies to reflect a program execution that achievesranches and speculatively execute instructions on the pre-
IPC close to that of an ideal memory system, where all ref- dicted path. On a misprediction, all the work done by the
erences complete in one cycle. processor in speculative mode is useless. Delaying com-
Previous studies, that examined latency tolerance inpletion of a load on which a branch instruction is depen-
decoupled architectures [8], analyzed the effects ofdent can increase the number of mis-speculated
increasing memory latency for systems both with and instructions executed and therefore degrade performance.
without caches. In the systems without caches, this pro-Hence, loads on which branches are dependent need to be
duces a uniform increase in latency for all memory given priority for early completion. Moreover, it is only
accesses. This type of analysis can provide some insighimispredicted branches that cause the processor to execute
into latency tolerance. However, it is an all or nothing useless instructions. Therefore, it is sufficient to force a
approach where every load has the same cost, and is suittoad to complete as soon as a mispredicted branch attaches
able only for specific memory system designs. Similarly, itself to the load’s dependency graph.
increasing the memory latency in cache based systems
does not accurately measure individual load latency toler- Performance-based Load Completion
ance, and the results may be highly dependent on the Using branch prediction information to force comple-
cache organization. The latency tolerance of referencestion of certain loads ensures the processor is executing
that hit in the cache is not measured, even though it mayuseful instructions. However that alone is not enough.
be quite large. Arbitrarily delaying completion of the rest of the loads
Our methodology extends this previous work, and is will aggravate the data dependencies problem and the
targeted at measuring the latency tolerance of individual finite resources problem mentioned in the previous sec-
load instructions. We rely on the ability to force comple- tion. This could prevent the processor from sustaining a
tion of loads at arbitrary times to ensure the processor isreasonable level of performance.
able to continue issuing instructions. Note this approach  To decide if loads should complete because of proces-
measures latency tolerance in the context of a processogor performance, we can monitor one of two standard pro-
with constrained resources. Eliminating these constraintscessor performance metrics: instruction issue rate or
would be an interesting study, but is beyond the scope offunctional unit utilization. When the processor perfor-
this paper. mance drops, we complete loads freeing up dependent
In our scheme, the measurement of load latency isinstructions as well as buffer space. In order to attain high

decomposed into the following four steps, which we elab- IPCs we do not delay load completion until the processor
orate on in the remainder of this section: actually comes to a stand still. Rather, we complete loads

as soon as the number of instructions issued or the number
of computational units that are busy drops below a tunable
threshold.

1. Determining that one or more loads should complete,
2. Determining when the load(s) should complete,

3. Determining which specific load(s) should complete, Loads can also be forced to complete when there is a

and o system call. However, for our benchmarks there are very
4. Determining how many loads should complete. few system calls, therefore we do not discuss this case fur-
ther in this paper.
3.1 Determining that Loads Should Complete

Our goal is to allow loads to remain outstanding as long 3-2 Determining Which Loads to Complete

as they are not adversely affecting performance. There- Once it is determined that some load(s) must complete,
fore, to determine if any load(s) should be forced to com- we need to decide which specific load to complete. In the
plete we must first determine if the processor performancecase of mispredicted branches, clearly the load on which
is degrading. Recall that the performance of dynamically the branch is dependent must be completed to ensure the
scheduled processors can degrade because it is unable &xecution of useful instructions. In contrast, we have com-
execute independent instructions due to limited buffer plete freedom to choose any load for completion when the
space, data dependencies, or it executes useless instrugssue rate or functional unit utilization decreases. We
tions due to incorrect branch prediction. Therefore, we investigate two policies: fifo and dependence graph depth.
force loads to complete if their results ensure the processorThe fifo policy simply forces the longest outstanding load



to complete. The second policy tracks the depth of a load’sentries, a 2-level branch predictor with a total of 8192
dependence graph in cycles. The load with the largestentries, and that all stores complete in a single cycle.
value is chosen for completion, since delaying it can  When necessary we assume a base two level cache con-
occupy resources for an extensive period of time. figuration using a 32KB direct-mapped L1, with 32 byte
blocks and 8 ports. The L2 is 1MB direct-mapped with 64
3.3 Determining When Should Loads Complete byte blocks, a single port and 8 cycles to satisfy an L1

Having established which loads to complete, the next Miss. Both caches support up to 16 outstanding misses, are
step is to determine when (i.e., in which cycle) they must fetch-on-write writeback, and have a 24 entry write-back
complete. To minimize execution of useless instructions buffer with a high watermark of 12. Contention is modeled
due to mispredicted branches, we must complete thein all parts of the memory system.
appropriate load such that the entire dependence chain Many of the load completion policies outlined in the
between the load and the branch completes executiorprevious section decouple detecting that a load must com-
before the branch. This requires the load to complete manyplete from determining when the load should complete.
cycles before we actually detect the mispredicted branch.Therefore, it is possible for our scheme to determine that a
Section 4 describes how our simulations accomplish this.!0ad should have completed even before we detect that it
If the load is forced to complete because of issue rate orshould complete. Recall the scenario where we detect that
functional unit utilization, we could naively complete itin & load should complete when a branch is dispatched and
the same cycle that we detected the degradation in perforattaches itself to the dependence graph of the load.
mance. However, this may not provide enough time for the Assume this detection occurs at cytland there ared
pipeline to fill up with ready instructions, and we may cycles worth of instructions in the dependence chain from
want the load to complete earlier. Therefore, we use a tun-the load to the branch. To minimize execution of useless
able threshold for loaghrecompletiontime to study the instructions, we determine that the load should complete at
effect of pipeline fill-up time on load latency tolerance.  cycle ¢-d), d cycles before we even establish the load

should complete.
3.4 Determining How Many Loads to Complete To support this type of analysis, we added rollback
capabilities to our simulator. This allows us to look ahead
to compute load completion time, rollback the processor,
and then restart execution using the predetermined load
latency. The replayed execution may itself incur rollbacks.
This technique ensures the processor instruction schedule
is determined by the measured latency values. Supporting
rollback requires logging all processor state at the end of
each simulated cycle. We limit the maximum number of
cycles a load can be outstanding to 32 and therefore a sin-
gle load can cause the processor to rollback a maximum of

To perform our measurements we modified SimpleSca- 32 cycles.
lar [2], which models a dynamically scheduled processor  Simulating a detailed out-of-order processor takes an
using a Register Update Unit (RUU) and a Load/Store enormous amount of time, and the rollback capabilities we
Queue (LSQ) [16]. The processor pipeline stages are: added only increase simulation time. Therefore, we also
Fetch: Fetch instructions from the program instruction modified SimpleScalar to support sampling. Our sampling

Finally, in order to obtain an instruction issue rate or
functional unit utilization above the set threshold, we may
need to complete more than one load in a given cycle. An
important parameter in this scenario is the limit on the
number of loads that may complete. We study this by lim-
iting the number of loads that can complete in a single
cycle to one, two, or four.

4 Experimental Methodology

stream. technique alternates between a detailed out-of-order simu-
Dispatch: Decode instructions, allocate RUU, LSQ lator and a faster functional simulator that also maintains
entries. the contents of the memory hierarchy.

Issue/Execute Execute ready instructions if the required Finally, to evaluate the effectiveness of traditional
functional units are available. memory hierarchies at capturing latency tolerance, we
Writeback: Supply the results of the operation to depen- simulate a two-level memory hierarchy, as described
dent instructions. above, in the same execution as the latency tolerance anal-
Commit: Commit results to the register file in program ysis. This enables comparison between the measured
order, free RUU and LSQ entries. latency tolerance and where in the conventional memory

Our baseline processor is an 8-issue machine with 8hierarchy the request is satisfied. The load timing is dic-
integer adders, 4 integer multiply/divide units, 8 floating tated by the latency tolerance measurements, and we sim-
point adders, 4 floating point multiply/divide units, and 8 ply track the contents of the memory hierarchy. Because of
cache ports. We assume 256 RUU entries and 128 LSQthe different processor schedule, there may be some inac-



curacies on the contents of the caches compared to an exe-
cution with load latency dictated by the conventional 60 ' ' ' ' T ' '
caches. However, we believe our approach is sufficient for
this study.

The following section presents our analysis using a
subset of the SPEC95 benchmarksmpress , gcc, li ,
vortex , hydro2d , swim, tomcatv , andwave. The 407
benchmarks are all compiled using the versiongot
provided with SimpleScalar and with optimization -O2.
We run each benchmark operating onréferencedata set
until 10 billion instructions commit using 1% sampling.
This sampling ratio produces IPC values within 5% of 20
complete simulations.

[1ideal (i cycle)

VA memlat32-dm32k

| memlat32-2way32k
A\ memlat64-dm32k
fixed (8 cycles)
fixed (32 cycles)

50T

O30t

5 Experimental Results L0
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This section presents our simulation results. We begin
by examining the performance of our benchmarks for dif-
ferent memory systems. This is followed by analysis of the
effects of branch prediction on latency tolerance. We then
analyze the effects of varying how to determine that loads ratios of these benchmarks, 2%, 1.4%, and 1.5%géar,
should comple_te, how to select loads to complete, how to); , andvortex , respectively, for a direct-mapped 32KB
compute the time that loads should complete, and hOWL1 cache. The other benchmarks exhibit L1 miss ratios

many loads are complete_d. We f|n!sh by, examining var- gar 494, thus increasing the discrepancy in performance
ous processor configurations and investigating the match

b he | Lo di onal multi| Icompared to the ideal memory system. We note that
etween the latencies incurred in conventional multi-level s, o550 associativity has little effect on overall IPC, and

memory hierarchies and the program’s measured Iatencyﬂ1at increasing the L2 miss penalty (memlat64-dm32K)
tolerance. dramatically reduces the performance of three floating

. point benchmarkshydro2d , swim, tomcatv ), while
5.1 Fixed Latency Memory Systems all other benchmarks exhibit a small reduction in IPC.

One approach to obtain information on the amount of  Another observation from the data in Figure 1 is that
latency tolerance in a system is to evaluate its performancethe performance of all benchmarks decreases as we
for various memory system delays. We performed this increase the latency for all memory accesses (ideal, fixed 8
experiment by examining memory systems ranging from cycles, fixed 32 cycles). The integer programs are espe-
simple fixed cost memory accesses with no contention tocially sensitive to the increases in fixed cost memory
detailed memory hierarchies with contention accurately delays, and their IPC values drop below the traditional
modeled at all levels. The fixed cost memory systems memory system when all memory accesses take 8 cycles.
assume all loads take the same amount of time, we examin contrast, the floating point codes show less sensitivity to
ined 1, 8, and 32 cycle memory accesses. The detaileda fixed cost delay of 8 cycles. Further increases in memory
two-level memory hierarchies assume the base 1MB secdatency continue to decrease the IPC for all programs.
ond level cache, but vary the first-level configuration and However, we point out the results of swim that show only
the second-level miss penalty. Specifically, we simulated amoderate reduction in IPC even when all memory accesses
direct-mapped and two-way set-associative 32KB L1 take 32 cycles. This performance is dramatically higher
cache with a 32 cycle memory latency (memlat32- than the detailed two-level memory hierarchy mainly
{dm,2way}32k) and a direct-mapped 32KB L1 with a 64 because of contention within the memory hierarchy.
cycle memory latency (memlat64-dm32k). The above analysis of fixed cost memory accesses pro-

Figure 1 shows the performance of our benchmarks in vides some insight into latency tolerance. However, it is an
terms of committed instructions per cycle (IPC) for the all or nothing approach where every load has the same
above memory system configurations. We make severalcost, and is suitable only for specific memory system
observations from these results. First, for three of the inte-designs. The uniform cost model doesn't exist in multi-
ger benchmarksggc, li , andvortex ) the traditional level memory hierarchies where some loads can be satis-
memory systems achieve IPC values close to the idealfied faster than others. Therefore, as described in
memory system. This is not surprising, given the low miss Section 3, our methodology is targeted at measuring the

0.0

vortex hydroz_d swim tomcatv wave

Figure 1: Memory System Configuration and IPC




latency tolerance of individual load instructions. The 7.0 T T T T T : : .

i i i 1 2-lev, ideal [ perfect, none
remainder of this section presents our results. S2.ev. al Egerfect' ol
6.0[ E%-:ev, none ;
5.2 Determining that Loads Must Complete e, MSpre
: S . o - 501 :
This section investigates the policies for determining :
when loads must complete in order to sustain performance ok :
comparable to an ideal memory system. We begin by 8 |
examining how branch prediction affects load latency tol- 30t :
erance. This is followed by analysis of instruction issue :
rate and functional unit utilization as metrics for determin- 20t 18
ing load completion. I
10f I
Branch Prediction and Load Latency Tolerance I
.. )= 1l §
We compare perfect branch prediction to our base two- 0.0 compress gec | hydro2d swim tomcatv wave

level predictor using various policies for determining that Figure 2: Branch Prediction and IPC.
loads should complete. For the two-level branch predictor,
the first policy always forces loads to complete if any
branch attaches itself to the load’s dependence chain (
lev, all). The next policy is similar, except it forces a load
to complete only if the branch is mispredicted (2-lev,
mispred)? Finally, for both the two-level and perfect
branch predictor we evaluate a policy that does not use al
branch information to force completion of loads (2-lev,
none and perfect, none). In all of these simulations w
make the following assumptions, loads not forced to comr
plete by a branch are completed according to an instru
tion issue threshold of four instructions per cycle, up tc
four loads can complete per cycle, which load to complet
is determined by the dependence graph depth, and \
assume a precompletion time of two cycles. We evalual
these parameters later in this section. For comparison, v
also simulate the ideal memory system for both the twc

- 2-lev, none
— = 2-lev, mispred
— - perfect, none

Cumulative % of loads completed

level predictor (2-lev ideal) and perfect prediction (perfec compress
ideal). . . . ; é | ‘1‘6‘ | ‘2‘4‘ | ‘3‘2 - é | ‘1‘6‘ | ‘2‘4‘ | ‘3‘2
Throughout this section we present our results in twi Load latency tolerance (cycles)

parts: IPC and latency tolerance. IPC results are present Figure 3: Branch Prediction and Latency Tolerance
like those in Figure 1. We present latency tolerance ii — -
terms of the fraction of loads that must complete in a spe- Pranches produces similar IPC values as forcing loads to
cific number of cycles. Loads that must complete in a complete for all branches, and that ignoring branch infor-

small number of cycles, do not exhibit latency tolerance Mation entirely dramatically reduces the integer programs’

and loads that can take many cycles to complete do exhibitPC values. We also see the expected result that perfect
tolerance. Loads are forced to complete according to thebranch prediction dramatically increases performance for

appropriate policy, or if they've been outstanding for 32 the integer codes. The two-level predictor achieves only
cycles. 88% accuracy focompress , 81% forgcc , 86% forli

Figure 2 shows the effects of branch prediction on IPC, @nd 89% forvortex . The floating point codes exhibit
while Figure 3 shows the corresponding latency tolerance SOmewhat higher prediction ratesy@ro2d - 99%, swim
values. From Figure 2, we see that the 2-level predictor 9%, tomcatv  92%,wave 90%). More sophisticated
policies that exploit branch information to force load com- Pranch predictors may produce higher accuracies, hence
pletion, meet our goal of IPC close to an ideal memory increased IPC rates.
system. Furthermore, we see that using only mispredicted For the integer benchmarkempress , gcc andli
between 20% and 25% of the loads are completed based
1. This is possible to simulate because in SimpleScalar we can determinedN mispredicted branch information, 7% feortex and
very early in the simulation cycle if a branch is mispredicted. less than 2% for the floating point benchmarks. With load




completion based on mispredicted branches enabled, we 7.0

see a considerable reduction in the average dispatch-issue g'fﬂ‘;j' (1 cycle)
delay for branches (time for the operands of the branch to 60  mmnisa
become available) for the integer benchmarks. Also, the Zdnis2
number of speculative instructions executed drops by up to 501 Emimatsz-dmszk
61% for the integer benchmarks. The effect on the floating S fixed (8 cycles)
point benchmarks is considerably less. ol
From Figure 3 we see that loads do exhibit variation in Eso |
completion delays, and there is significant variation ' k
among benchmarks. Between 13% and 62% of loads need 20t

to complete in one cycle, while 58% to 98% of the loads
need to complete within eight cycles. Furthermore, the 10f
floating point programs exhibit very little variation in load
latency for the various branch-based load completion 0.0 Comprss o0t a0 -Vonequdrozdsim omCat. Wave
schemes. In contrast, the integer programs are sensitive to Figure 4: Performance-based completion and IPC
these factors. In particular, differentiating mispredicted
branches from accurately predicted branches produce-
noticeable improvements in load latency tolerance without
significant changes in IPC. Ignoring branches altogethe o
yields high latency tolerance, but the IPC values are toc
low. The final observation from these results is that
improvements in branch prediction will increase the
amount of latency tolerance for the integer programs, a:
indicated by the increases seen for perfect branch predic
tion.

Processor Performance and Load Latency Tolerance

The second source of information for determining if
loads should complete is processor performance. Here, w 3
examine the instruction issue rate and functional unit utili-

mulative % of loads complete

zation as metrics for determining that loads should com- 40;”: hydro2d L 40
. . compress

plete. We assume that mispredicted branches forc 201 - 20

completion of loads, precompletion time is 2 cycles, and e s w2 8 16w

up to four loads can complete per cycle. Load latency tolerance (cycles)

Figure 4 shows the effect of issue rate thresholds of 1
(nisl), 2 (nis2) and 4 (nis4), and a functional unit utiliza-
tion threshold of 4 (fub4) on instructions per cycle. When-
ever the processor issue rate (or number of busy functionallPC than the ideal memory system because of the differ-
units in the case of fub4) drops below this threshold, we ence in the processor instruction issue schedule.
force loads to complete. For comparison, we include the
IPC values for the traditional memory system (memlat32- . . ; o
dm32K) and the fixed 8 cycle memory system. From this the various issue r.ate thre.sho'IQS. The first observat!on is
data we see that functional unit utilization produces that although functional ur_1|t utilization (fub4) has a slight
slightly higher IPC values than instruction issue rate (fub4 Performance advantage, it produces much lower latency
vs. nis4). The simulations also reveal that decreasing thetolerance than the mstructllon issue rate metric (nis4). We
instruction issue rate threshold produces a commensuratélso observe that decreasing the issue rate threshold can
decrease in IPC. We note that for all but three of the inte- dramatically increase the latency tolerance. This matches
ger benchmarks, IPC values are still higher than the tradi-our intuition that if the processor is consuming data at a
tional two-level memory system even when the threshold lower rate, it can take longer for the data to arrive. How-
is one instruction per cycle. As mentioned previously, the ever, the cost of this increased latency tolerance is reduc-
three integer programs have low L1 miss rates, and theytion in IPC. A four instruction per cycle threshold
achieve near ideal performance. We also note that forproduces IPC values within 8% of the ideal memory sys-
swim, functional unit utilization actually achieves higher tem, whereas a threshold of one instruction per cycle pro-

Figure 5: Performance-based completion and Laternyc
Tolerance

Figure 5 shows the corresponding latency tolerance for



duces IPC values up to 35% lower than ideal. Therefore, 70

we do not consider thresholds of one or two further in this g;ﬁga' (Lcycle)
paper. Similarly, we omit further discussion of functional 60/ mmdg
unit utilization since the decreased latency tolerance more P memlat32-dm32k
than offsets the marginal increase in IPC. 5ol  Ifixed (8 cycles)
5.3 Determining Which Loads to Complete U4.0-
Now that we've determined that either mispredicted a -
branches attaching to a load’s dependence graph or the 301 \ g
instruction issue rate falling below 4 should force load
completion, we focus on identifying which outstanding 201
load to complete. Completing the load at the head of the
LSQ (fifo) can prevent processor stalls due to the RUU/ Lor
LSQ being full and thus help alleviate the finite resource
problem. On the other hand, completing the load with the 0.0 compress gec 1 vortexhydra2d swim tomcaly wave
maximum depth (in cycles) of dependent instructions (dg) Figure 6: Load Selection and IPC

will help tackle the data dependency problem by freeing
up the most dependent instructions and thereby keep the
processor maximally utilized

Figure 6 shows the effect of the load selection policy on
instructions per cycle and Figure 7 shows the correspond-
ing latency tolerance values. The figures show that both §
the fifo and dg load selection policies produce almost
identical IPC numbers. However completing loads based 8
on the dependence graph depth increases the latency tolel
ance of loads for the floating point benchmarks. These
results provide further evidence of the variation in load
latency tolerance, and indicate that completing loads in
program order is not necessarily the “best” schedule for
exploiting latency tolerance.
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5.4 Determining When to Complete Loads 40 compress hydro2d L 40

Having decided to complete the loads with the maxi- T e m 8 16 4 »
mum .depth of dependent instructions, we proceed to Load latency tolerance (cycles)
investigate when such loads should be completed. The

load completion time controls the amount of time avail-
able for the pipeline to fill up with ready instructions. We tions, completing loads earlier obviously decreases their
study the effect of completing loads the same cycle aslatency tolerance. Furthermore, the processor requires
detecting performance degradation (pipeline fill-up time of some recovery time as results propagate down the depen-
zero - fut0), one cycle earlier (futl) and two cycles earlier dence graph and a sufficient number of instructions
(fut2) on load latency tolerance. Note this only applies to become ready to execute. Using a pipeline fill-up time of 2
loads not forced to complete by a mispredicted branch.cycles (fut2) produces the best combination of IPC and
From Figure 8,we see that IPC goes down for all bench- latency tolerance numbers.

marks exceptompress , gcc andli as we decrease the

pipeline fill-up time. These three benchmarks have a sig-5.5 Limiting the Number of Completed Loads

nificant number of loads completed due to mispredicted

branches. Hence fill up time has less imp&stim shows Finally, achieving IPCs close to that of an ideal mem-
the highest degradation in IPC, going down from within ory system will likely require completing more than one
3% of ideal for fut2 to within 10% of ideal for fut0. Look- load per cycle. Keeping all other parameters fixed, we
ing at the corresponding latency tolerance graphs inexamine limits of one (nl1), two (nl2) and four (nl4) on the
Figure 9, latency tolerance generally increases as wenumber of loads that can complete in a single cycle.
decrease the fill up time. These results match our expectafigure 10 shows the impact of these limits on IPC and

Figure 7: Load Selection and Latency Tolerance
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Figure 10: Loads Completed and IPC
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Figure 9: Completion Time and Latency Tolerance Figure 11: Loads Completed and Latency Tolerance

Figure 11 shows the corresponding latency tolerance num-sor, we used an issue rate threshold of three instructions
bers. The overall trend we observe from this data is that, asper cycle and up to three loads can complete in a single

we increase the limit on the number of loads that can com-cycle. Figure 12 shows the effect of various processor con-

plete in a cycle from 1 to 4, IPC increases and the latencyfigurations on IPC and Figure 13 shows the corresponding

tolerance decreases. This is in line with our expectations,latency tolerance numbers. The graphs are labeled accord-
since a lower limit causes some loads to complete latering to issue-width/RUU entries/LSQ entries.

than they should according to our policies, which causes a  The first observation from this data is that the issue

decrease in IPC. width has a much larger impact on IPC than buffer space
does. We note that all the IPC values shown are within
5.6 Effects of Processor Architecture 11% of the corresponding ideal memory system. Also, we

see that the IPC values are mostly independent of the num-
To evaluate the impact of various microarchitectural ber of RUU/LSQ entries. However, the situation is very
changes on our measurements, we evaluated a configuradifferent with respect to the amount of latency tolerance.
tion with 128 RUU entries and 64 LSQ entries, and a four From Figure 13, we see that latency tolerance increases
issue processor for both the 128/64 and 256/128 RUU/when either the issue width decreases or the RUU/LSQ
LSQ configurations. In the case of the four issue proces-entries increases. The floating point programs exhibit



6.0 — T T fies each load and increment a counter for the correspond-
giﬁggﬁgg ing measured latency tolerance. This produces a histogram
sob  Em8/28i64 | for each level in the memory hierarchy, and allows us to
718/256/128 evaluate the memory hierarchy’s effectiveness with vary-
ing access times for each level. For example, if the L2
401 i access time is 8 cycles, then to avoid performance degra-
dation, loads with measured latency tolerance less than 8
cycles should be satisfied by the L1 cache. Similarly, loads
with measured latency greater than or equal to 8 cycles,
but less than main memory access time, could be satisfied
by the L2 cache. Clearly, we can perform this computation
for arbitrary access times. Furthermore, we can track the
discrepancy between where a load should be satisfied and
where it is actually satisfied in the memory hierarchy.

We performed this analysis on 8KB, 16KB, and 32KB,
direct-mapped and two-way set-associative L1 caches with
32-byte blocks, using the base L2 cache configuration
(1MB, 64-byte blocks). For brevity, we report results only
for the direct-mapped caches and an L2 access time of 8
cycles on the 8-issue processor with 256 RUU entries and
128 LSQ entries. Table 1 shows the effectiveness of the
traditional two-level memory hierarchies at capturing
latency tolerance. The top row for each benchmark in the
table indicates the percentage of loads satisfied by a partic-
ular level in the memory hierarchy with measured latency
tolerance less than 8 cycles. Similarly, the bottom row for
each benchmark corresponds to loads with measured
latency greater than or equal to 8 cycles. The levels of the
memory hierarchy are the load/store queue (LSQ), L1
cache, L2 cache, and main memory.

We focus our discussion on the L1 and L2 caches. In
particular, the number of low latency loads (< 8 cycles) not
satisfied by the L1 cache and the number of high latency
loads (>= 8 cycles) satisfied by the L1 indicates the mis-
- 60 match between the applications latency demands and the
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Figure 12: Processor Architecture and IPC (Issue-
width/RUU-size/LSQ-size)
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‘2‘8, compress ydrozd ;‘8 latency incurred in the memory hierarchy. From these
T T s % results we see that some benchmarks exhibit significant
discrepancy between their latency demands and the
Load latency tolerance (cycles) - . .
_ _ latency that’s incurred in a real memory hierarchy. Con-
Figure 13: Processor Architecture and Latency sider the 16KB cache f@wim, 16% of loads require low
Tolerance (Issue-width/RUU-size/LSQ-size) latency but are satisfied by the L2 cache, whereas 29% of

larger increases than the integer programs. The most strik /02ds have enough latency tolerance and are L1 cache hits.
ing change is foswim with the 4/256/128 configuration, Ideally, thpse_ references should be swapped, with thg L1
nearly all its memory references can complete in the 32 pache s§t|sW|ng the low latency loads and the L2 satisfy-
cycle limit. ing the high latency loads

Compress is another striking example, with 16% to
22% of its loads requiring low latency but missing in the
L1 cache. However, we note thedmpress has very few

The results presented thus far indicate that programs dadhigh latency loads for this processor configuration. In con-
exhibit variations in load latency tolerance. We now evalu- trast, forswim 2% to 36% of loads require low latency yet
ate how well traditional memory systems meet an applica- miss in the L1 cache, whereas 13% to 37% of loads are
tion’s inherent latency demands. To determine this, we high latency and hit in the L1. Finally, for the floating
track which level in a traditional memory hierarchy satis- point benchmarks a noticeable fraction (1%-3%) of loads

5.7 Traditional Memory Hierarchies



Where the Load is Satisfied in a Traditional Memory System
Benchmark | Latency LSQ L1 Cache L2 Cache Memory
8K | 16K | 32K | 8K | 16K | 32K | 8K [ 16K [ 32K | 8K | 16K [ 32K
<8 11% | 11%| 11%| 659 689 71% 22% 19% 1% [0 )]
compress
>=8 0 0 0 2% 2% 2% 1% 1% 0 0 0 0
<8 7% 7% 7% | 75%| 77% 739 5% 39 2‘1; ( 0 g
gce
>=8 1% 1% 2% | 10%| 109 169 19 0 OI d 0 0
<8 9% 9% 9% | 80%| 81% 819 3% 29 29 ( 0 a
li
>=8 2% 2% 2% 7% 7% 7% 0 0 0 0 0 0
<8 17% | 17%| 17%| 5299 539 54% 4% 3% 2% D d (
vortex
>=8 5% 5% 5% 21%| 219 219 19 19 0 ( 0 0
<8 22% | 22%| 22%] 609 619 62% 6% 5% 1% 3% 3% 3o
hydro2d
>=8 0 0 0 7% 8% 8% 1% 1% 19 0 0 0
<8 5% 5% 5% | 26%| 45% 599 36%16% | 2% | 2% | 2% 3%
swim
>=8 0 0 0 13%| 29% | 37% | 18% | 8% 1% 199 1% 1%
<8 11% | 11%| 11%| 2099 319 39% 22% 11t 2% 3% 3 ! )
tomcatv
>=8 0 0 0 17%| 31%| 369 21% 7% 39 6% 6% 6%
<8 26% | 26%| 26%] 379 449 48% 17% 10% 6% 1% 1t il
wave
>=8 4% 4% 4% 8% | 12%| 149 7% 39 1°/|> ( 0 0

Table 1: Effectiveness of Traditional Memory System at Capturing Latency Tolerance

require low latency but are satisfied by main memory. As memory hierarchy’s performance, when compared to the
the disparity between processor cycle time and main mem-direct-mapped caches.

ory access time increase, even this small fraction of refer-

ences can dramatically reduce overall performance. 6 Conclusion

The mismatch between an application’s latency  This paper explores latency tolerance in dynamically
demands and the actual latency is dependent on the perforscheduled processors. Our two primary contributions are a
mance of the real memory hierarchy. In general, we seequantitative evaluation of applications’ inherent latency
that reducing the L1 cache size increases the discrepancytolerance in dynamically scheduled processors, and analy-
The floating point benchmarks show dramatic increases assis of how well a conventional memory hierarchy meets
the cache size is reducefiwim andtomcatv go from the application’s latency demands. We compute latency
2% low latency L1 load misses in the 32KB cache to 36% tolerance by measuring the number of cycles a load could
and 22%, respectively, in the 8KB cache. Although not take to complete without adversely affecting performance
shown, reducing the boundary from 8 cycles to 6 cycles compared to an ideal memory system where all loads com-
can increase the number of low latency load misses in theplete in one cycle.

L1 cache. Also, our results (not shown) indicate that  Our measurements show that load latency is a function
increasing the L1 associativity has very little effect on the of the number and type of dependent instructions. In par-
match between the application’s latency demands and thdicular, mispredicted branches have a significant impact on



measured latency tolerance for the integer benchmarks[8]
We also observe that most programs do exhibit some
latency tolerance, and still obtain IPC values comparable
to an ideal memory system. Our results show that between
1% and 62% of loads must complete in one cycle, and
between 5% and 98% must complete within 8 cycles,
depending on processor configuration.

We show that for some benchmarks, a significant num-
ber of loads could be satisfied in latencies on the order of [10]
second level cache access times, while others must be sat-
isfied by the first level cache. Unfortunately, this discrep-
ancy in latency tolerance is ignored by conventional
memory hierarchies that always fetch data into the primary
cache. We plan to investigate methods for utilizing latency
tolerance information in memory hierarchy management.
Prefetching [11] is clearly one avenue for exploiting this
information. Alternatively, we could place data in the
memory hierarchy according to the corresponding load’s
latency tolerance and bypass higher levels of the memoryl12]
hierarchy [1,7,20], or prioritize requests in a system that
supports multiple outstanding misses.

[9]

[11]
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